A note on stable complex structures on real vector bundles over manifolds
نویسندگان
چکیده
منابع مشابه
Notes on homogeneous vector bundles over complex flag manifolds
Let P be a parabolic subgroup of a semisimple complex Lie group G defined by a subset Σ of simple roots of G, and let Eφ be a homogeneous vector bundle over the flag manifold G/P corresponding to a linear representation φ of P . Using Bott’s theorem, we obtain sufficient conditions on φ in terms of the combinatorial structure of Σ for some cohomology groups of the sheaf of holomorphic sections ...
متن کاملOn Stable Vector Bundles over Real Projective Spaces
If X is a connected, finite CJF-complex, we can define iKO)~iX) to be [X, BO] (base-point preserving homotopy classes of maps). Recall [2] that if xEiKO)~iX), the geometrical dimension of x (abbreviated g.dim x) can be defined to be the smallest nonnegative integer k such that a representative of x factors through BO(k). If $ is a vector bundle over X, the class in (PO)~(X) of a classifying map...
متن کاملStable Real Algebraic Vector Bundles over a Klein Bottle
Let X be a geometrically connected smooth projective curve of genus one, defined over the field of real numbers, such that X does not have any real points. We classify the isomorphism classes of all stable real algebraic vector bundles over X .
متن کاملStable Bundles on Hopf Manifolds
In this paper, we study holomorphic vector bundles on (diagonal) Hopf manifolds. In particular, we give a description of moduli spaces of stable bundles on generic (non-elliptic) Hopf surfaces. We also give a classification of stable rank-2 vector bundles on generic Hopf manifolds of complex dimension greater than two.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Topology and its Applications
سال: 2015
ISSN: 0166-8641
DOI: 10.1016/j.topol.2015.03.015