A note on stable complex structures on real vector bundles over manifolds

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Notes on homogeneous vector bundles over complex flag manifolds

Let P be a parabolic subgroup of a semisimple complex Lie group G defined by a subset Σ of simple roots of G, and let Eφ be a homogeneous vector bundle over the flag manifold G/P corresponding to a linear representation φ of P . Using Bott’s theorem, we obtain sufficient conditions on φ in terms of the combinatorial structure of Σ for some cohomology groups of the sheaf of holomorphic sections ...

متن کامل

On Stable Vector Bundles over Real Projective Spaces

If X is a connected, finite CJF-complex, we can define iKO)~iX) to be [X, BO] (base-point preserving homotopy classes of maps). Recall [2] that if xEiKO)~iX), the geometrical dimension of x (abbreviated g.dim x) can be defined to be the smallest nonnegative integer k such that a representative of x factors through BO(k). If $ is a vector bundle over X, the class in (PO)~(X) of a classifying map...

متن کامل

Stable Real Algebraic Vector Bundles over a Klein Bottle

Let X be a geometrically connected smooth projective curve of genus one, defined over the field of real numbers, such that X does not have any real points. We classify the isomorphism classes of all stable real algebraic vector bundles over X .

متن کامل

Stable Bundles on Hopf Manifolds

In this paper, we study holomorphic vector bundles on (diagonal) Hopf manifolds. In particular, we give a description of moduli spaces of stable bundles on generic (non-elliptic) Hopf surfaces. We also give a classification of stable rank-2 vector bundles on generic Hopf manifolds of complex dimension greater than two.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Topology and its Applications

سال: 2015

ISSN: 0166-8641

DOI: 10.1016/j.topol.2015.03.015